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Introduction

Introduction

In our introductory statistics education, we were taught a number of key
principles to guide our research.

But principles that are obvious in one context may be obscured in another.
And so, year after year, we keep doing the same thing.

In this talk, I'll briefly consider 3 examples. |I'm preparing a manuscript
with several more examples and | treat all of them in much more detail.
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Replicability, Representativeness, Visualization

Multivariate Nonnormal Random Number Generation

Many studies of robustness have used the technique due to
Fleishman(1978) and Vale and Maurelli (1983) to simulate data.

By 2010, there were dozens of citations to the Fleishman and
Vale-Maurelli articles.

Fleishman(1978).

A power transformation of a standardized normal variable Z.

Y = b+ b1 Z + by Z% + b3 Z3 (1)

Manipulated skewness and kurtosis independently while maintaining zero
mean and unit variance.

Vale and Maurelli(1983).

Extended the method to allow the generation of sets of standardized
variables with desired marginal skewness and kurtosis, and specified
intercorrelations.
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Replicability, Representativeness, Visualization

Multivariate Nonnormal Random Number Generation

Fleishman had given only one set of weights for any skewness-kurtosis
combination.

Around 2010, a student, Miriam Kraatz, and | noticed that the solution for
polynomial weights in the Fleishman transformation is not unique.

On the next slide are plots of two polynomial transformations of Z that
both yield skewness of 3 = 0 and kurtosis of ~, = 25.
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Replicability, Representativeness, Visualization

Multivariate Nonnormal Random Number Generation

Transformation 1
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Replicability, Representativeness, Visualization

Multivariate Nonnormal Random Number Generation

This apparently subtle difference has a big effect on the distribution of the
two transformed variables.

Transformation 1 Transformation 2
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Replicability, Representativeness, Visualization
Multivariate Nonnormal Random Number Generation

The difference is even more obvious when a bivariate distribution is
produced.

Only one of the distributions looks remotely like anything I've
encountered. How about you?
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Replicability, Representativeness, Visualization

Multivariate Nonnormal Random Number Generation

Which of several possible transforms is produced may be an accident of
fate, depending on how the software is written, or whether the coefficients
were taken directly from Fleishman’s article.
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Replicability, Representativeness, Visualization

Multivariate Nonnormal Random Number Generation

In her dissertation research, Kraatz found, not surprisingly, that some
statistical methods perform rather differently with different versions of
“the" transform.

This means that replicability and clarity are in doubt for articles using
these methods.

Moreover, some simulated data produced by the method of Vale and
Maurelli (1983) aren’t representative of what we normally see in the real
world.
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Replicability, Representativeness, Visualization

Multivariate Nonnormal Random Number Generation

Having opened Pandora’s box, Kraatz proceeded to investigate further.

She found several published papers that claimed to simulate combinations
of skewness and kurtosis that are not possible — because there are joint
bounds on skewness and kurtosis for any distribution, and the claimed
values violated these bounds.

Apparently, software solving for Fleishman coefficients “converged” to a
solution that is outside the permissible parameter space.

Reviewers and editors had failed to detect this.
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Replicability, Representativeness, Visualization

Multivariate Nonnormal Random Number Generation

Think of how the quality of the overall research effort might have been
positively impacted had authors been encouraged to

© Report the weights used to generate skewness and kurtosis
combinations.
@ Show visualizations of data generated by conditions in their studies.

© Discuss representativeness of the data.
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A Fixed Cutoff Test for Sample Mean Differences?

Suppose you are talking your undergraduate class through hypothesis
testing, with a very basic example comparing means from two independent
groups with equal sample size and known o.

The null hypothsesis is that @ — pp = 0.

A bright and enthusiastic student jumps the gun and suggests a “new
cutoff strategy” to compare the means.
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff Test for Sample Mean Differences?

The New Cutoff Strategy. Reject the null hypothesis that u1 — puo = 0 if
and only if |D| = |Xe1 — Xe2| > ¢, where ¢ = 0.50.

Anyone proposing such a rule in the simple context of tests on means
would quickly be reminded that a fixed cutoff for the sample estimate D
doesn't work consistently across sample sizes, because the sampling
variability of D varies.

Here is a demonstration of the fixed cutoff for testing p1 — o = 0 when
o =15, ¢ = 7.5, and the null hypothesis is true.
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff Test for Sample Mean Differences?

Fixed Cutoff Rule at 7.5, n= 16
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X
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff Test for Sample Mean Differences?

Fixed Cutoff Rule at 7.5, n= 25

-12.75 -850 -425 0.00 425 850 1275
X

James H. Steiger (Vanderbilt University) Complexity, Principles, and Practice 16 / 55



The Strange Case of the Fixed Decision Criterion A Fixed Cutoff Test for Sample Mean Differences?

The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff Test for Sample Mean Differences?

Fixed Cutoff Rule at 7.5, n= 50

-12.75 -850 -425 0.00 425 850 1275
X
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff Test for Sample Mean Differences?

Fixed Cutoff Rule at 7.5, n= 75

0.0011 § 0.0011
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The Strange Case of the Fixed Decision Criterion A Fixed Cutoff Test for Sample Mean Differences?

The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff Test for Sample Mean Differences?

If you expect the fixed cutoff rule to replicate a legitimate hypothesis
testing approach, you will be disappointed.

You find that the "half sigma test” rejects too often with small samples
and hardly ever with large samples.
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Although the fixed cutoff fallacy is obvious in the context of tests on

means, the identical fallacy has persisted in covariance structure modeling
for decades in various forms.

For example, a number of studies examined the efficacy of a cutoff value
of .05 of the sample RMSEA as a device for determining when fit is not

perfect—apparently oblivious to the fact that such a cutoff value cannot
be found.

Perhaps lost in the shuffle was the fact that the entire concept of fit indices
evolved from the consideration that model fit is almost never perfect!
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Imagine that someone proposed a sample RMSEA cutoff value of 0.05 as a
criterion for rejecting the hypothesis of perfect model fit.

On the next few slides, we examine approximately what would happen
with different degrees of freedom and different sample sizes.

We start with a single df model and vary the sample size.
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 50,df=1
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 100, df=1
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 250 ,df=1
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 500, df=1
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The Strange Case of the Fixed Decision Criterion A Fixed Cutoff for Sample Fit Indices SEM

The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

As n increases, the variability of the RMSEA decreases and the rejection
rate goes from very high to very low.

Next, we examine the effect of degrees of freedom.
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 200,df=1
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The Strange Case of the Fixed Decision Criterion A Fixed Cutoff for Sample Fit Indices SEM

The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 200, df = 10
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 200, df =25
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Let's play it again. First, tests on means with a fixed cutoff.
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Fixed Cutoff Rule at 7.5, n= 16
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Fixed Cutoff Rule at 7.5, n= 25
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X
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Fixed Cutoff Rule at 7.5, n= 50
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Fixed Cutoff Rule at 7.5, n= 75

0.0011 § 0.0011
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X
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Next, tests of perfect fit using a fixed RMSEA cutoff.
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 50,df=1
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 100, df=1
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 250 ,df=1
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

RMSEA Rejection Rates, Fixed Cutoff Rule at 0.05,n= 500, df=1
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Does everyone get the picture?

One thing that emerges from the RMSEA plots is that things get worse as
degrees of freedom get smaller.

This is because, as MacCallum, Browne, and Sugawara (1996) have
pointed out, precision of estimation of population fit suffers when degrees
of freedom are small.

Without an index of precision of estimation, a point estimate can be
misleading.

Before | continue, let me ask you: Would you expect a fixed cutoff
criterion to work consistently well with any point estimate of any SEM fit
coefficient?
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Several studies examined the fixed cutoff approach as if it was a viable
method for model fitting.

Others, including papers by Lance, Marsh, and Kenny, have criticized the
fixed cutoff approach in vague terms that fail to get to the heart of the
matter.

This lack of precision often leads to statements and conclusions that are at
best seriously misleading.
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

An example: a recently published article by Kenny, Kaniskan, and
McCoach(2014).

The title of the article is “The Performance of the RMSEA in Models with
Small Degrees of Freedom.”

The title alone manages to be misleading in 3 different respects.

@ The article does not discuss the performance of the RMSEA as
correctly used. It actually discusses the performance of the fixed
cutoff rule. Steiger and Lind (1980) never mentioned either a point
estimate or a fixed cutoff rule.

@ The title obscures the fact that the fixed cutoff rule doesn't work for
degrees of freedom in general, not just small df.

@ The title deflects from the fact that other fit indices don’t work with
fixed cutoff rules either. The article mentions this only vaguely in a
footnote.
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The Strange Case of the Fixed Decision Criterion
A Fixed Cutoff for Sample Fit Indices SEM

Things go downhill from there, although, not surprisingly, | certainly agree
that fixed cutoffs don't work well with small df.

James H. Steiger (Vanderbilt University) Complexity, Principles, and Practice 43 / 55



Two Kinds of Standardization Introduction

Two Kinds of Standardization

Introduction

Standardization is an important tool in statistics. It can help us see more
clearly what our data mean. But there are at least two different kinds of

standardization, which | call stochastically-motivated and
measurement-motivated.

James H. Steiger (Vanderbilt University) Complexity, Principles, and Practice

44 / 55



Two Kinds of Standardization Measurement-Motivated Standardization

Two Kinds of Standardization

Measurement-Motivated Standardization

A standardization is Measurement-Motivated if it removes the metric from
data to allow it to be more consistently interpretable.

A classic example is in the context of the 2-sample t-statistic. We are
interested in the standardized effect size

5:/"L1_H2

~ )

and we compute a t statistic as

t= Vot e 3)
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Stochastically-Motivated Standardization
Two Kinds of Standardization

Stochastically-Motivated Standardization

A standardization is Stochastically-Motivated if it leads to a distributional
result for the hypothesis test.

It also happens to be the case that

G RN

provides the formal noncentrality parameter for the t distribution that
describes our t statistic. Hence, standardizing the mean difference by
dividing by o (and S) in this case is both measurement-motivated and
stochastically-motivated.
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Two Kinds of Standardization

Stochastically-Motivated Standardization

What makes this correspondence particularly useful is that we can compute
a confidence interval on the noncentrality parameter of any of the classic
noncentral distributions (t,F,x?), as Rachel Fouladi and | described in a
tutorial article on “Noncentrality Interval Estimation™ in 1997.

We get a Cl for A = y/n/2 9, divide the endpoints by y/n/2, and we get
back a Cl on the quantity we are interested in.
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The Correlated Sample t-Test
Two Kinds of Standardization

The Correlated Sample t-Test

Consider the paired sample t test applied to two repeated measures. We
again wish to test whether ;3 — pp = 0. In this case, the two kinds of
standardization might be different. Suppose you decide on substantive
grounds that what you are interested in is, once again,

M1 — 2
o= 12 (4)
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The Correlated Sample t-Test
Two Kinds of Standardization

The Correlated Sample t-Test

To get a test statistic, you need to divide the sample mean difference by
sp, the standard deviation of the difference scores. But in this case, the
noncentrality parameter for the non-null distribution of the t statistic is
(assuming equal variances)

R (5)

oD
02 — o012

0'\/1f
1
= \/ﬁm 0 (8)
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Two Kinds of Standardization
The Correlated Sample t-Test

In other words, in order to characterize the distribution correctly, by
dividing the sample mean difference by sp, we get a tractable distribution,
but the quantity we are interested in is “polluted by covariance.” In this
case, measurement-motivated and stochastically-motivated standardization

differ.

A discussion of this issue in the context of t-tests can be found in
Steiger(1999).
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Two Kinds of Standardization
Standardization in SEM

A virtually identical problem occurs in the context of SEM, in which, as
discussed in Steiger(2000), the noncentrality parameter’s standardization is
clearly stochastically-motivated.

Consider the extremely simple SEM model that p = py. The asymptotic
x? statistic for this hypothesis is

(r — po)?

2
x“=nF=n
(1-p5)?

The noncentrality parameter is approximately

N2
N = pFt— P Pg)2
(1—pp)

James H. Steiger (Vanderbilt University) Complexity, Principles, and Practice 51 /55



IR ERS B EULEIC PRI Standardization in SEM

Two Kinds of Standardization
Standardization in SEM

And, since there is only 1 df, the population RMSEA is approximately

lp — pol
l—p(zJ

So the RMSEA will match p — po well only for lower values of pg.
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Two Kinds of Standardization Standardization in SEM

Two Kinds of Standardization
Standardization in SEM

Note, however, that the "best” characterization of effect size in the test of
p = po is open to debate. Is it p — pp? Is it (assuming positive
correlations) p? — p2?

These are dilemmas.

53 / 55
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Two Kinds of Standardization Standardization in SEM

Two Kinds of Standardization
Standardization in SEM

Clearly, fixed population cutoffs for the RMSEA need to be taken with a
grain of salt. But their use as a point of calculation has yielded some
valuable insights. Can we do better? In simple cases, certainly.

In the previous example, one obvious solution is to create a confidence

interval on r — pg, the simplest special case of the RMSR. More complex
situations are definitely challenging.
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Conclusions

Conclusions

We can find many examples in the published literature in which principles
that seem obvious in simple contexts slip by us.

Can we do better? | hope so.
I'm not being rhetorical here, or holier than thou. I'm one of the offenders.

Hindsight can be 20/20. One thing is sure — it is hard to solve a problem
you don't see.

| hope to be back next year with a solution to at least one problem.
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